Sign In
Forgot Password?
Sign In | | Create Account

Underfloor Electric Heating. Part I: In by Christmas

It’s been over two years since the foundations went in for the extension we’re building on our house. In that time I’ve come to respect and somewhat rely on glib phrases such as “Good things come to those who wait” and “Patience is a virtue”. I told my better half we’d be moved in by Christmas, I didn’t say which one though. In this blog series of the time I used FloVENT to simulate the beneficial thermal effects of the layer of sub-floor expanded foam insulation that UK building regulations insist on. There’s not much point in insulation unless you’ve added some heat to keep inside. Being located in quite a rural location we’re not on the gas mains, we haven’t got an oil tank to power a boiler so the only heating options are wall mounted electric storage heaters or underfloor electric heating mats. I’m not a big fan of wearing socks inside and I don’t like cold feet. I opted for the latter.

"Oh to be in England, in the summertime"

Electric heaters, whether wall mounted or buried under the floor, rely on the concept of Joule (or ohmic or resistive) heating to turn electric current flow into heat. Whilst electronics cooling is the challenge faced by thermal engineers helping design electronic products, or products with electronics in, electronics heating is the friend of those of us who live in more temperature climates.

The cost of installing wall mounted electric storage heaters compared to underfloor electric heating mats is surprisingly similar. The main difference in operation being the power density (and resulting local temperature) of the heat source. The wall mounted heater is quite small and gets quite hot, in that respect operating in a similar way to a wall mounted hot water radiator heating system though with a much higher thermal mass and subsequent inability to cool down or heat up quickly. The underfloor electric heating mats are spread over the entire floor area and warm the floor up slightly.

The heating mats come rolled up with the electric heating element already taped to a mesh to ensure that when laid out, the element is equally distributed on the floor.

   

   

Once taped to the floor you put a layer of adhesive over the top (unless you’re brave enough to lay the tiles directly on top), let that dry then lay the floor tiles as usual. The installation instructions indicate that you should do a resistance check at all stages of the installation. They didn’t say what you should do if the resistance goes up massively (due to damage or fracture of the wire) after the tiles are down. The inference was I think to run screaming outside with your hands flailing above your head prior to phoning professional installers to rip out your attempt and to do the job for you properly.

Thermal simulation of such an application lies somewhere between what FloTHERM and FloVENT was designed to do. The former having the ability to simulate Joule heating, including the temperature dependent effects of the electrical resistivity of the wire. The latter having the ability to predict specific aspects of the resulting human comfort such a comfort temperature, PMV, PPD etc. Let’s just say I used FloTHENT.

From a qualitative perspective you can clearly see the effects of the hot wires and how the heat diffuses down into the concrete screed. But hey, qualitative, shmalitative, who’s interested in pretty pictures? For an accurate simulation it’s critical to ensure the correct boundary conditions are defined for the heating element itself. More on that next time.

11th August 2011, Ross-on-Wye.

FloVENT, Electronics Cooling, HVAC, underfloor heating

More Blog Posts

About Robin Bornoff Follow on Twitter

Robin BornoffRobin Bornoff achieved a Mechanical Engineering Degree from Brunel University in 1992 followed by a PhD in 1995 for CFD research. He then joined Mentor Graphics Corporation, Mechanical Analysis Division (formerly Flomerics Ltd) as an application and support engineer, specializing in the application of CFD to electronics cooling and the design of the built environment. He is now the Product Marketing Manager responsible for the FloTHERM and FloVENT softwares. Visit Robin Bornoff's blog

More Posts by Robin Bornoff

Comments 2

Post a Comment
This is a very efficient way to heat. Instead of heating directly, it makes more sense to heat the person by directly transferring energy to him/her via the floor. Love it. This, however is a technical endevor that requires financial resources and probably an IT consultant

Joe Burton
8:32 AM Nov 2, 2011

Indeed Joe. Whereas basic CAD competences are well within the reach of domestic architects the use of CAE is much less adopted though the benefits are evident.

Robin Bornoff
3:13 PM Nov 2, 2011

Add Your Comment

Please complete the following information to comment or sign in.

(Your email will not be published)

Archives

Tags

 
Online Chat