Sign In
Forgot Password?
Sign In | | Create Account

Combining FEA-based Generator Modeling & Multi-Discipline System Simulation for Wind Power Design & Analysis



This Seminar will present an effective modeling and simulation tool-flow that supports design and analysis of integrated Wind Power Systems. There will two major areas of focus. The first will be on leveraging Finite Element Analysis (FEA) for the design of Brushless DC and Doubly Fed Induction generators. Performance specifications will be directly entered into a template for MotorSolve software from Infolytica Corporation. A typical machine design flow will be demonstrated, to show sizing, design iterations based on load point analysis and performance envelope calculations. Materials modeling, including core losses, as well as equivalent circuit analysis, time harmonic, PWM and dynamical analysis of these machines, will also be shown.

The second area of focus will be integration of the generator in a system-level simulation context. After the machine is analyzed and verified to meet all of the performance requirements, MotorSolve will export a model that is in the IEEE Standard Hardware Description Language format, VHDL-AMS. This model will be directly loaded into SystemVision from Mentor Graphics.

In SystemVision, all of the other critical system components will be modeled, and their interactions with the machine will be simulated. These include the wind turbine, the power converter or drive electronics, and the energy storage battery or 3-Phase loads. The system model will also contain control algorithms, for example Maximum Power Point Tracking (MPPT) or selectable generator power factor control. SystemVision is also used to assess component stress levels under transient as well as steady-state operating conditions. Registration for this seminar is required.

What You Will Learn

  • An effective “tool-flow” that leverages an IEEE Standard simulation model format
  • How to connect the physical design process of a rotating machine to the dynamic context of the system in which it operates
  • Template and FEA-based sizing, design and modeling of Doubly Fed Induction and Brushless DC Motors/Generators
  • Rotating machine analysis: Equivalent circuit model, AC Analysis, PWM and Dynamical Analysis
  • Materials modeling and characterization of core losses
  • Generation of VHDL-AMS equivalent model
  • Control algorithm development and evaluation, for Maximum Power Point Tracking and Power Factor Regulation
  • Power Electronics component stress analysis during system transient and steady-state operation

About the Presenters

Presenter Image Mike Donnelly

A ten-plus year veteran with Mentor Graphics, Mike Donnelly currently works as a principal engineer with the SystemVision development team. Donnelly is engaged in modeling and simulation of analog, mixed-signal, and multi-discipline systems, covering a broad range of applications, including power, controls, and mechatronics. He has 30 years’ experience in Aerospace and Automotive Engineering, focusing on simulation-based design exploration and analysis, from concept through detailed implementation levels. Prior to joining Mentor, Donnelly worked for Analogy Inc., Boeing Aerospace and Electronics Co., and Hughes Aircraft Company (Space and Communications Group). He holds an MSEE in Systems and Control from the University of Southern California and a BSEE from the University of Cincinnati.

Presenter Image Tanvir Rahman Ph.D

Dr. Tanvir Rahman is an Application Engineer at Infolytica Corporation where his primary responsibility is the CAD and applications of electromagnetic solvers to electric machines. Most recently he has been involved with applying some of the latest CAD tools for the design and simulations of Brushless DC and Induction motors.

Dr. Rahman has been professionally involved with the simulation and modeling of electric machines since 2006. He obtained his Ph.D. in Computational Physics from McGill University in 2005 in the area of Astrophysical fluid dynamics. His research interests include multi-physics simulations of electric machines, new design algorithms of switched reluctance machines among many others.

Who Should View

  • Electric Machine Design Engineers and Scientists
  • Wind and Traditional Power System Engineers
  • Machine Drives and Power Converter Electronics Design Engineers
  • Machine Controls Engineers and Algorithm Developers
  • Power Systems Engineering Managers
  • CAE Tools Specialists and Managers
  • System Engineers
Infolytica Mentor Graphics

Related Resources


Tackling Your Mechatronic System Design Challenges

This session presents an innovative mechatronic system integration capability featuring SystemVision. You will learn how SystemVision uses standards-based modeling, and advanced simulation and analysis...…View Technology Overview

A New, No-Compromise Hardware Option that Will Meet Your Cost, Schedule & Risk Budgets

This session discusses and demonstrates how a systems or application engineer, with no IC design or modeling experience, can quickly develop and test their own custom mixed-signal integrated circuit.…View Technology Overview

Facing the 'More Electric' Design Challenge with 'More Integrated' Modeling Capability Design

This session will demonstrate standards-based modeling format and tool integration technology that supports multi-disciplinary design team collaboration as they apply to power generation and distribution...…View Technology Overview

Other Related Resources

A VHDL-AMS Fuel Cell Model for Mechatronic System Analysis

White Paper: Modeling is a useful technique that allows important variables to be parameterized and provides visibility to the key factors that drive performance. This white paper describes how to apply an electrochemical...…View White Paper

Reduce Project Schedules and Increase Quality using Model Driven Development

White Paper: This paper shows how Model Driven Development can address common challenges in the system design, verification & testing of complex systems and systems of systems. Model Driven Development and virtual...…View White Paper

A Methodology to Manage Mechatronic Development in Medical Electronic Products

White Paper: This paper discusses model-driven development (MDD) as the enabler of virtual system integration. MDD dramatically reduces the risks of complex mechatronic system development, increases productivity within...…View White Paper

Online Chat